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Many researchers have observed the development of an electromagnetic field during shock 
compression of solids [I, 2]. A current pulse in an external circuit [I] and a signal in a 
receive antenna [2] have been recorded from the moment of shock wave formation until its exit 
from the specimen. Electromagnetic perturbations of the terrestrial field have also been 
observed at the epicenter of earthquakes [3]. This phenomenon was studied in [3-6] for the 
purpose of predicting earthquakes. The signal spectrum is in the low-frequency range (up to 
several MHz) and the effect is observed in all materials: metals, dielectrics, semiconductors, 
plastics, sand, etc., although in some materials the effect shows a threshold character. The 
effect in question has been explained by movement of various types of structural defects 
(point defects in [I], dislocations and cracks in [5, 6]), and by electrification of rock 
during its disintegration [7-9]. 

The present study will use a model of shock polarization of a material in a shock wave 
analogous to that of [I]. We will treat an almost spherical shock wave and consider the de- 
pendence of the degree of polarization on pressure and broadening of the shock front. The 
development of the electromagnetic field is caused by polarization currents in the wave front. 
The signal amplitude will be determined on the surface separating two media (near zone). The 
form of the signal and features of its spectrum will be studied as functions of polarization 
relaxation time, shock wave characteristic development time and amplitude, and parameters of 
the medium. 

We will consider an almost spherical shock wave propagating in a weakly conductive semi- 
space. We assume that behind the shock wave front the medium is polarized in the radial di- 
rection. The polarization of the medium has a weak asymmetry which may be related, for ex- 
ample, to inhomogeneity of the medium, nonuniform development of cracks, slight asymmetry of 
the shock wave front, the effect of gravity, etc. Without concretizing the mechanism respon- 
sible for polarization of the medium, we will describe the latter by an expression of the 
form 

P (r, O, t) P =o  (r) ( t  + ~ cos O) ( t  -- e-( t - t~ e -(t=t~ n (t -- to) , ( 1 ) 

where ~ is a small parameter which takes account of asymmetry relative to some direction: 
to = (r -- a)/v is the moment of arrival of the shock wave at a given point r, e; v = const; 
a is the radius at which charge is formed in the shock wave: ~(t -- to) is a unit function: 
T and Tp are characteristic times for development and relaxat$on of the polarization pulse. 
We will neglect motion of the medium behind the shock wave front. The amplitude of the polar- 
ization P0(r) in a plane shock wave is approximately proportional to the pressure D on the 
front, i.e., P0 = AD [I], where (for example, for NaCI) A ~ 3"10 -6 C/m 2 GPa. 

Considering that the peak pressure in a spherical shock wave varies with distance by a 
power law, we write 

Po (r) = A D ,  (a/r) ~. (2)  

Here D, is the initial pressure on the shock wave front, the exponent n ~ 2 for a plastic 
wave, and n ~ I for an elastic wave. The duration of the shock wave front T is inversely 
proportional to the amplitude-of the pressure [10]; therefore we may assume that T = Tf(r/a)n~ 
The characteristic time ~p ~ 10-3-10 -~ sec is apparently determined to a large degree not by 
the width of the shock wave front, but by the internal material polarization mechanisms. Thus, 
for polar dielectrics Tp is the typical time for thermal reorientation of molecular dipoles, 
for ionic crystals the relaxation is caused by conductivity Tp % gg0/o, where ~ is the ionic 
electrical conductivity and e is the dielectric permittivity. 
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We will consider the region occupied by the shock wave as an effective radiator. The 
dipole moment of such a system for t ~ 0 is directed along some axis of symmetry (0 = 0). 
The space charge in the source is concentrated mainly near the shock front in a layer of thick- 
ness V(Tp + T), and about a cavity where a compensating charge of opposite sign is found. If 
the shock wave has yet to reach the surface, then by integrating Eqs. (~), (2) over the volume 
limited by the radius rf = ~ + vt we obtain the dipole moment. Considering that the integral 
is taken at the length V(~p + ~) ~ rf, we may assume the functions r2p0(r) and ~(r) within 
the integral of Eq. (3) to be constant. 

As a result, 

d ( t ) =  P(r,O,t) cosOdV= 3r~72 LTpkt- - 'e  - - T ,  i - - e  -T*  , 
v (3) 

T, = TpT (rf)/[Tp + T (rf)].  

The s y m m e t r i c  p o r t i o n  o f  Eq.  (1 )  d o e s  n o t  a f f e c t  d i p o l e  moment  (3 )  and  p r o d u c e s  no c o n t r i b u -  
t i o n  t o  t h e  e x t e r n a l  f i e l d .  

We w i l l  u s e  t h e  f o l l o w i n g  p a r a m e t e r  v a l u e s :  D,  = 10 GPa,  a = 10 m, B = 0 . 1 ,  v = 3"10  3 m/ 
s e c .  F o r  t h e s e  q u a n t i t i e s  we may a s s u m e  t h a t  t h e  c o n d i t i o n s  ~ / V ~ p ,  a / v ~ ,  ~ 1 a r e  s a t i s f i e d .  
M o r e o v e r ,  a t  l a r g e  d i s t a n c e s  t h e  f r o n t  b e c o m e s  s u f f i c i e n t l y  e x t e n d e d  so  t h a t  t h e  c o n d i t i o n  

~ ~p i s  s a t i s f i e d .  C o n s i d e r i n g  t h e s e  f a c t s ,  we r e p l a c e  Eq.  (3 )  b y  an  a p p r o x i m a t e  e x p r e s s i o n  
o f  t h e  f o r m  

~ - ~  "~p - -  ~,  ] 13 AD,a~v 
d(t)=4nB T,e-L~*--xpe ~'~P+ ( ~ t ~ m J ,  B =  3 ' (4 )  

w h e r e  T m = a / v ;  m = 2 ( n -  l ) ;  h e r e  and  b e l o w  T ,  = T p T f / ( T p  + T f ) .  

L e t  t h e  d i s t a n c e  f r o m  t h e  c e n t e r  o f  t h e  c a v i t y  t o  t h e  s u r f a c e  o f  t h e  med ium b e  e q u a l  t o  
l ,  w h i l e  t h e  e f f e c t i v e  d i p o l e  f o r m e d  b y  t h e  s h o c k  wave  f o r m s  a n  a n g l e  a w i t h  r e s p e c t  t o  t h e  z 
a x i s  ( F i g .  1 ) .  The  med ium i n  w h i c h  t h e  d i p o l e  i s  l o c a t e d  i s  c o n d u c t i v e ,  n o n m a g n e t i c  (z  < 0 ) ,  
a n d  i s  b o u n d e d  b y  a v a c u u m  (z  > 0 ) .  We w i l l  c o n s i d e r  t h e  e l e c t r o m a g n e t i c  f i e l d  a t  t h e  s u r -  
f a c e  z = 0 ,  l i m i t i n g  o u r s e l v e s  t o  d i s t a n c e s  p ( t h e  p o l a r  r a d i u s )  f o r  w h i c h  t h e  wave  n u m b e r s  
k = m/c and y = /iop0m satisfy the conditions k9 << I and lyl0 >> I, i.e., we will consider 
the near zone. These inequalities are valid over the frequency range (92op0)-i << m << c/p. 
The components of the electromagnetic field were obtained in [11] with consideration of bound- 
ary conditions on the surface (polar coordinates): 

E~---- 2 ~ p 3  e , H~---- , �9 -- 2~u 

e2 = - - ( r  c o s  a A- 7 P  s i n  ct c o s  ~ ) ,  e~ = - - ~ h  o = - - 2 i  s i n  ~ s i n  ~ ,  
. (5) 

e 0 = ~('l, po)'~, cos a - -  s in  a cos ~), hz = 3i s in  ~ sin (P/YP, 

h~ = - - ( ~ l ~ P  cos ~ n u s in  ~ cos ~), ~0 = ~!~o 1~/4, ~1 = e0/o. 

26 



Here the angle ~ is measured from the polar axis on which the dipole moment vector is pro- 
jected. The dependence of depth ~, considered approximately in Eq. (5), transforms to exact- 
ness at m0 ~ c. The Fourier transform of the dipole moment of Eq. (4) has the form 

[ i ] ~* ~P + (~p -- T,) T m dx (6) d (e) = 4= B 1 -- i~% I -- i~Tp I 7 

We will study the features of the frequency spectrum of the signal by substituting Eq. (6) 
in Eq. (5). The pole terms lead to sharp maxima of IEkl and IHkJ at co ~ Tp I and ~ ~ r~. I, and 
the last term in Eq. (6) gives a marked contribution to the frequency range to < Ym I ~ 3.102 
sec -l, since in the opposite case there is a rapidly oscillating function within the integral. 
As ~ § 0 the field vanishes; therefore, in the low-frequency spectral range there may also be 
a maximum, defined by the characteristic shock wave development time Ym" If the electrical 
conductivity of the medium o = 10-2-10 -3 ~-Zm-1 and p % 1-10 km, then spectral maxima occur 
in the frequency interval where Eq. (5) is valid, i.e., in the radio range, as has been con- 
firmed experiment ally. 

To estimate the signal dependence on time, one can integrate Eqs. (5), (6) over all fre- 
quencies, since at low frequencies the fields vanish, and the high-frequency contribution is 
negligibly small in view of the factor exp (2i i/~-~T0). Thus 

co 

1 i' Ek (p, t) = ~ E k (p, e) e -~et de, (7) 

where E k and H k a r e  d e f i n e d  by Eqs. (5 ) ,  (6 ) .  In  the  r e g i o n  of  the  maxima the  i n t e g r a n d  ex-  
p r e s s i o n  ~zz << 1; t h e r e f o r e  the  f i e l d  w i l l  be p roduced  m a i n l y  by the  h o r i z o n t a l  component of  
t h e  d i p o l e .  The t y p i c a l  i n t e g r a l  o b t a i n e d  by s u b s t i t u t i n g  the  p o l e  te rms  in  Eq. (7) can be 
written as 

e(i--l) V2--~0--iot s 
1 - - i o %  d~, s = 0, t ,  2, 3; (8 )  

- - o o  

where the integration contour passes above the branching point ~ = 0 and passes through a 
sheet satisfying the condition of wave attenuation at infinity. We substitute in Eq. (8) the 
expression 

0 
t ~ y(1-~%) . e ag, t -- i ~ .  

- - o o  

valid for real w. Since the integrals are convergent, by changing the order of integration 
and reducing the frequency range of the inner integrals to the interval O, +~, we find 

R~ = ] e~Q~ (y, e)du,wh~r~Q0 = 2 j e -V~'~" cos wde, w = 2 V%-f0-- ~t', 
--oo 0 

Q1 = (i -5 l) y e-]/2~--~ (sin w + c0s w) W'ode, (9) 
0 

" dQ~ ~ ,  t' 
Q ~ = ~ T U '  Q~ i , =t+y~,. 

With the  r e p l a c e m e n t  z = d~-~ t h e  i n t e g r a l s  Q0, Q~ r educe  to t a b u l a r  forms [12] .  Then the  
e x p r e s s i o n s  of  Eq. (9) t a k e  t he  form 

t 

R o ~, e J e  L o ( t ) a t ,  
0 

t 

(~ + t) . l---if- -q~, 
~, v - u e  oe  ~'1~* La ( t ' )dt ' ,  (10) R~ 

0 

R, = (Uv.)[2 ]/-~% L o (t) - -  R o (t)], R~ = (-- i/~.)[(i + 1) V~-~L~ (t) + R~ (t)], 

L o (t) = e-%/tt -~m, L~ (t) = e-~~ - -2%).  

27 



The term depending on rp is obtained from Eq. (10) by replacing T, by Tp and changing all 
algebraic signs to their opposites. The integrals of Eq. (10) are more convenient than the 
original expression (8) and will be used for further analysis. 

We will calculate the contribution produced by the last term of Eq. (6). Substituting 
the latter in Eq. (7) and changing the order of integration (the integrals converge) we obtain 

S o~'/~e ' V---~ d~, T,  ( ' )  =JzmCd--! (i-~) 2~ -~ot,, t" = t - -  v m ( x "  1), s = 0 , 1 ,  2, 3. (11) 

The inner integral in Eq. 

After similar transformations we have 

T(o-,) = " ~-~ "o [~ + ( t -  t')/~.],~' 
0 

T$") = ~[2 .V"~ '~oLo( t ) - -mT(o '+~) ( t ) ] ,  
"1; m 

(11) can be expressed in terms of the functions Q0, Q~, Eq. (9). 

t 

T(.)  _ (i -+- t) f"-~'~ ~ L~ (t') dt" 
- - -  ~ .  " ] /  - T  [~ + ( t -  t ' ) / , ,~lm,  

0 

T(,~) __ i - ~  mT([,+~) (t)]. [(~ + 1) V - T  L~ (t) + 

12) 

(lO), 
The components of the electromagnetic field can be expressed in terms of the functions 

(12): 

np2 V ~-~ s i n  a v .  a* - -  (Tp - -  T . )  ~T(am)] ,  E .  = 

2 o ctg q) - iB sin r cou (p [ ' r  - -  T ;R2* - -  (Zp - -  T . )  TroT(m)], 
Ep = ~ / ~ ~  z~9 a ( 13 ) 

/_/~ 3B sin o~ sin r [ ~ , R o ,  
= - + 

H ~  = 2 tg  q)H~ (~ - -  i) ~ / 2  B sin a' sin (p n 
- = 

At I = 5"10 2 m and o = 10 -3 ~-im-l, the parameter T0 ~ 8"I0 -5 sec. In this case the 
four time parameters defining the features of the signal on the surface lie in the following 

sequence: T m ~ Tp > T, ~ T0. 

We will study in greater detail the behavior of the component Ep, which can be represented 

as the difference of two terms: 

m (gp - -  ~ , )  N m + l )  Eo = 2B sin ~z cos cp 
Ep ---- E 0 ~0 No -- Cm , V~ op3 , (14) 

t [ t,--t, t,-t [ L o (t') dt' 
-e )L0(t')dt' >0, >0 

0 0 

In the region t << ~t" expanding the exponentials in the integral No in linear terms, after 
the change of variables = T0/z 2 we find 

(U ~ ) ] No = ' = (t + 2To) edc  -7- -- 2 V~ e -~o# . (15) 

The term Nm+ l at t << T m leads to the expression 

Study of Eqs. (15), (16) shows that at t ~ t, = T,Tp/Tm, (Tp -- T,)Nm+I/T m ~ NO. The 
signal has an abrupt front with characteristic time To. In the region t, ~ t ~ T,, where 
No ~ (Tp -- T,)Nm+I/Tm a change in sign occurs, and the dependence become linear (Fig. 2, curve 
I). The greatest amplitude of the positive phase is reached at t ~ T,, Tp and comprises 
Ema x ~ E0 ~ BAD,va2/oO s �9 For the parameter values chosen above we find that Ema x ~ 109/0 3 
~V/m, where p is expressed in m. 
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For t >> ~p in the integral No we perform the replacements t' = TpZ 2 and t' = ~,zi: 

! r 4 / .  ~ , , . .  ~ r  j 
No= 2 ~pp ---7 -dz V~-~-, J 7 dz, (17) 

0 

where b~ = T0/Tp; b 2 = T0/T, << I. To evaluate the integral, we divide it into two regions. 
For z > I only the first term need be retained in the exponent in Eq. (17). For 0 < z < ] 
the integrand has an abrupt maximum at z % b; therefore, in the given interval the second 
term of the exponent is significant. Using these approximations and dropping small terms, 
we obtain 

i f  Tp - -  T, N O z ~ -~ -  ( e  ' t /~ '  - -  e - t / r * )  + t , / z  

whence it is evident that in the range Tp << t << T m the signal fails exponentially (with a 
characteristic time Tp), and -3/2 �9 then by a law t , wzth a change in sign occurring: (Tp -- ~,) x 
Nm+i/~ m > No. At t > Tm, on the other hand, the value of Ep is negative. To estimate the 
integral Nm+ I in this region we perform the replacement t' = To/z 2, after which the integral 
takes on the form 

i e--Z~zi(m+D V 2 ~o 
N~+~ = l f ~  (t + t l~)  ~+A [~  _ q~i~+~ dz, q = ~ << 1. ( 1 8 )  

�9 V ~  

At z > I in Eq. (18) we may neglect the parameter q, and in the region TC~-o0/t < z < I the ex- 
ponent ~I. We divide the integral of Eq. (18) into two regions with consideration of the 
simplifications performed above. In this case the answer can be obtained in final form by 
integration by parts. For integral m, after dropping small terms we have 

Nm+~ = 2 [1 -I- (Vs erfe (1) + Km+,] (19) 

w h e r e  K~ = T Y ~m -~ t r  -]- t -- Vt " K2 = --iTm -}- ~ K 1 ;  Ks ---- 41; m [ 2 -t- ~ }  -I-. --8 K1. 

We note that the expressions obtained are applicable over a wider region: t ~ To, while 
in the range t0 ~ t ~ Tm, where the approximation K m = m TV~0t/TmC~-is valid, Eqs. (16), (19) 
give identical results to the accuracy of a numerical factor ~I. Thus, the asymptote of the 
signal in the region t ~ T m is given by the expression 

2~ ( % -  ~ , )E  o 1 / ?  - ~  I t ~m-~/~] 
E o = _ IT) ] 

The maximum modulus of the negative phase is approximately Wp/T m times smaller than the ' 
positive and is reached at t ~ T m. The characteristic form of the electric E and magnetic H 
signals is shown in Fig. 2. Calculations were performed for the parameter values given above~ 
Curves I-4 show the dimensionless functions to/E0, Ezl/Eop , 3H01/40H00 , Hz/20H0, respectively. 
The region t < 10 -3 sec, where the functions have peaks or oscillate, must be considered more 
carefully, since the contribution of high frequencies was considered approximately. 

The exit of the shock wave onto the surface, not considered in the present study, leads 
to appearance of a vertical dipole component. Usually, in this stage the wave transforms to 
an elastic regime with lower pressures and therefore has no marked effect on the electromag- 
netic fields. 

We will note the role of the scale factor. Thus, if the specimen dimensions are smaller 
than the relaxation region, the size of which is ~v(T + Tp), then the form of the signal 
presented above changes. The onset of the signal is determined by the time Tm, and its ter- 
mination by the relaxation of polarization in the given material or the character of unload- 
ing of the specimen surface. 

We will consider the component Hz, again dividing the expression into two terms: 

H~ 3 B s i n a s i n ~ l i  So = ,. ~pe ~P - -  T , e  -T~-* Lo(t')dt' ' ( 2 0 )  
Hz = - ~ o  (Nm-- So) , H o ~ 2 ] / ~  p 4 ' o 
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where N m is defined by an expression analogous to Eq. (14) (for Nm+1). For t ~ T, we expand 
the integrands in Eq. (20) in terms of the parameters (t -- t')/T,, (t -- t')~p, (t -- t')/Tm, 
considering that in the expression for So terms of first order smallness are retained. Inte- 
grals of the first nondisappearing terms of the expansion are calculated similarly to Eq. 
(15). As a result, we have 

the expression for No presented in Eq. (15). In the range To ~ t ~ ~, Eq. (21) takes on the 
form 

Hz = Ho i / ~  t (t - -  t , )  
TOTS I 

Whence it is evident that the sign of the function changes. 

% 2 322 The maximum v a l u e  o f  IHzl in  t h i s  r e g i o n  a t  t % t ,  i s  Hma x H o t , / T o T f  ~ 8AD,v T,T~/ 
~0~Tfp 4 ~ 107/p ~ A/m (p expreSsed in m). At t > T m the falloff of the signal is determxned 
by the asymptote of the expression for N m. Thus, at m = J Hz ~ In (t/Tm)(J + t/Tm) -i, while 
at m = 2 H z ~ t~7(I + t/Tm) 2 The maximum value of H z in the region t % T m is approximately 
2 2 

Tm/~p times larger than Hma x. The form of the signal is shown by curve 4 of Fig. 2. 

Studies revealed that the components E z and Hp behave in a similar manner. Therefore, 
we will present only asymptotic expressions for t > T m. The typical integrals found in the 
calculations are evaluated like Eqs. (17), (18), by dividing into two intervals. After drop- 
ping small values, we obtain 

2p T p -  �9 Km H p = H  e ~  ~ +  e r f c ( t ) - - - ~ -  . 
T 0 ( i + t / ~ m )  m ( 2 

The f o r w a r d  p o r t i o n  o f  t he  p e r t u r b a t i o n  f o r  t h e s e  components  may be e i t h e r  m o n o t o n i c  o r  a l -  
t e r n a t i n g  in  s i g n .  Th i s  i s  b e c a u s e  the  f u n c t i o n  L l ( t ) ,  in  c o n t r a s t  to  L 0 ( t ) ,  changes  s i g n  
a t  t = 2~0, and c o n s e q u e n t l y ,  t he  c o n t r i b u t i o n s  to  the  i n t e g r a l  of  the  r e g i o n s  t < 2T0 and 
t > 2T0 can compensa t e  each  o t h e r .  I n  c o n c l u s i o n ,  we w i l l  p r e s e n t  v a l u e s  o f  a m p l i t u d e s  o b -  
t a i n e d  f o r  Tp -- ~ ,  = 5-10 -4  s e c :  E z ~ E0(~p -- ~ , ) p / l ~  m % 106/p 2 pV/m  and c o r r e s p o n d i n g l y  
Hp ~ H0(Tp -- ~ , ) p / l T 0  % 105/p 3 A/m. In  c o n t r a s t  to  the  p r e c e d i n g ,  t h e  maximum v a l u e s  o f  t h e s e  
components  d e c r e a s e  w i t h  the  d e p t h  of  shock  wave f o r m a t i o n  l .  Compar ison  of  n u m e r i c a l  v a l u e s  
shows t h a t  a t  d i s t a n c e s  p ~ 1 km a l l  components  of  t he  e l e c t r i c  v e c t o r  a r e  of  the  same o r d e r  
o f  m a g n i t u d e ,  bu t  a t  l a r g e  d i s t a n c e s  Ez d e c r e a s e s  more s l o w l y .  At p ~ 1 km the  components  
Hp and Hv a r e  l a r g e r  t h a n  H z .  

The p r e s e n c e  i n  t he  s i g n a l  o f  a s h o r t  d u r a t i o n  peak % ~ ,  ~# f o r  a l l  f i e l d  components  i s  p 
r e l a t e d  to  the  r a p i d  change  of  t he  d i p o l e  moment in  t he  i n i t i a l  s t a g e  o f  t he  p r o c e s s .  When 
t he  s i z e  o f  t he  r e l a x a t i o n  zone becomes sma l l  in  c o m p a r i s o n  to  t h e  d i s t a n c e  t r a v e r s e d  by the  
shock wave t he  d i p o l e  moment changes  o n l y  b e c a u s e  o f  i n c r e a s e  in  the  volume of  the  p o l a r i z e d  
m a t e r i a l  and d e c r e a s e  in  wave a m p l i t u d e .  The d e c r e a s e  in  e l e c t r o m a g n e t i c  f i e l d  in  t h i s  s t a g e  
i s  d e t e r m i n e d  by t he  c h a r a c t e r i s t i c  m e c h a n i c a l  t ime  f o r  shock  wave d e v e l o p m e n t ,  i . e . ,  t he  
q u a n t i t y  7m = ~ / v  o r  r f / v .  Thus ,  i t  was e s t a b l i s h e d  e x p e r i m e n t a l l y  in  [13] t h a t  t he  e l e c t r o -  
m a g n e t i c  p u l s e  r e l a x a t i o n  t i m e i s  %W 1/~, whereW is  the  e x p l o s i o n  e n e r g y .  This  can  be e x p l a i n e d  
by t he  f a c t  t h a t  t he  q u a n t i t i e s  ~ and r f  ~ W ~/~.  The p r o p o r t i o n a l i t y  c o e f f i c i e n t  c o i n c i d e s  
w i t h  the  d a t a  o f  [ J 3 ] ,  i f  f o r  r f  we c h o o s e  the  r a d i u s  o f  the  d e s t r u c t i o n  zone .  

The d i f f e r e n c e  in  the  f r e q u e n c y  s p e c t r u m  i s  the  e x i s t e n c e  o f  maxima in t h e  r a d i o  r a n g e ,  
which a g r e e s  w i t h  t h e  d a t a  o f  [ 3 - 6 ,  13] .  The c h a r a c t e r i s t i c  l e n g t h  o f  t h e  e l e c t r o m a g n e t i c  
wave in  t h i s  c a s e  i s  much g r e a t e r  t h a n  the  d e p t h  ~. This  i s  r e l a t e d  to  the  weak dependence  
o f  the  peak i n t e n s i t y  v a l u e s  on ~. 

Thus ,  t he  e f f e c t  o f  m e c h a n i c a l  e l e c t r i f i c a t i o n  o f  a c o n d e n s e d  medium unde r  the  a c t i o n  
o f  a shock  wave c o n s i d e r e d  h e r e i n  p e r m i t s  e x p l a n a t i o n  o f  e x p e r i m e n t a l l y  o b s e r v e d  p r i n c i p l e s ,  
in  p a r t i c u l a r ,  t h e  magn i tude  and form of  the  e l e c t r o m a g n e t i c  s i g n a l  on the  s u r f a c e  and t he  
f r e q u e n c y  s p e c t r u m .  

I n  c o n c l u s i o n ,  the  a u t h o r  t hanks  V. K. S i r o t k i n  and A. S. Chernov f o r  t h e i r  v a l u a b l e  
a d v i c e .  
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INDUCTIVE ACCELERATION OF PLANE BODIES 

A. M. Abramov, A. A. Blokhintsev, 
S. A. Kalikhman, V. I. Kuznetsov, 
V. N. Fomakin, and A. A. Tsarev 

UDC 538.323:534~2 

A promising direction of practical application of the inductive acceleration of plane 
bodies is the laboratory study of processes occurring in high-velocity collisions. Unlike 
other methods of studying this process [I], an annular conductor accelerated by electromag- 
netic forces does not experience the reaction of the accelerating medium and thereby the 
purity of the experiment is significantly improved. 

Processes of high-velocity projection of annular conductors were considered in [2, 3] 
where the effects of the geometric size of the accelerating system, the resistance, the self- 
inductance of the energy storage device, and the mass of the accelerated body on the trans- 
formation of energy in the accelerator were studied. In [4] analytical expressions and oper- 
ating curves were obtained, allowing one to choose the optimal regime of acceleration, taking 
into account the heating of the conductor by the current passing through it. However, because 
a nonuniform magnetic field acts on the conductor as it speeds up, it is superheated near its 
inner radius and it deforms and splits. Hence the direct use of a conductor as one of the 
colliding bodies is limited. 

In the present paper we discuss the results of a mathematical model and an experimental 
study of high-velocity projection of annular conductors when the colliding body is acceler- 
ated by another annular conductor. This method can be used to accelerate poorly conducting 
materials such as steel, titanium, etc., and dielectrics. The experiment was performed for 

Cheboksary. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No, i~ 
pp. 36-40, January-February, 1986. Original article submitted October 24, 1984. 

002~-8944/86/2701-0031512.50 �9 Plenum Publishing Corporation 31 


